6,765 research outputs found

    Diffusion Tensor Imaging: on the assessment of data quality - a preliminary bootstrap analysis

    Get PDF
    In the field of nuclear magnetic resonance imaging, diffusion tensor imaging (DTI) has proven an important method for the characterisation of ultrastructural tissue properties. Yet various technical and biological sources of signal uncertainty may prolong into variables derived from diffusion weighted images and thus compromise data validity and reliability. To gain an objective quality rating of real raw data we aimed at implementing the previously described bootstrap methodology (Efron, 1979) and investigating its sensitivity to a selection of extraneous influencing factors. We applied the bootstrap method on real DTI data volumes of six volunteers which were varied by different acquisition conditions, smoothing and artificial noising. In addition a clinical sample group of 46 Multiple Sclerosis patients and 24 healthy controls were investigated. The response variables (RV) extracted from the histogram of the confidence intervals of fractional anisotropy were mean width, peak position and height. The addition of noising showed a significant effect when exceeding about 130% of the original background noise. The application of an edge-preserving smoothing algorithm resulted in an inverse alteration of the RV. Subject motion was also clearly depicted whereas its prevention by use of a vacuum device only resulted in a marginal improvement. We also observed a marked gender-specific effect in a sample of 24 healthy control subjects the causes of which remained unclear. In contrary to this the mere effect of a different signal intensity distribution due to illness (MS) did not alter the response variables

    Lost in translation: data integration tools meet the Semantic Web (experiences from the Ondex project)

    Full text link
    More information is now being published in machine processable form on the web and, as de-facto distributed knowledge bases are materializing, partly encouraged by the vision of the Semantic Web, the focus is shifting from the publication of this information to its consumption. Platforms for data integration, visualization and analysis that are based on a graph representation of information appear first candidates to be consumers of web-based information that is readily expressible as graphs. The question is whether the adoption of these platforms to information available on the Semantic Web requires some adaptation of their data structures and semantics. Ondex is a network-based data integration, analysis and visualization platform which has been developed in a Life Sciences context. A number of features, including semantic annotation via ontologies and an attention to provenance and evidence, make this an ideal candidate to consume Semantic Web information, as well as a prototype for the application of network analysis tools in this context. By analyzing the Ondex data structure and its usage, we have found a set of discrepancies and errors arising from the semantic mismatch between a procedural approach to network analysis and the implications of a web-based representation of information. We report in the paper on the simple methodology that we have adopted to conduct such analysis, and on issues that we have found which may be relevant for a range of similar platformsComment: Presented at DEIT, Data Engineering and Internet Technology, 2011 IEEE: CFP1113L-CD

    Gene–Environment Interactions and Intermediate Phenotypes: Early Trauma and Depression

    Get PDF
    This review focuses on current research developments in the study of gene by early life stress (ELS) interactions and depression. ELS refers to aversive experiences during childhood and adolescence such as sexual, physical or emotional abuse, emotional or physical neglect as well as parental loss. Previous research has focused on investigating and characterizing the specific role of ELS within the pathogenesis of depression and linking these findings to neurobiological changes of the brain, especially the stress response system. The latest findings highlight the role of genetic factors that increase vulnerability or, likewise, promote resilience to depression after childhood trauma. Considering intermediate phenotypes has further increased our understanding of the complex relationship between early trauma and depression. Recent findings with regard to epigenetic changes resulting from adverse environmental events during childhood promote current endeavors to identify specific target areas for prevention and treatment schemes regarding the long-term impact of ELS. Taken together, the latest research findings have underscored the essential role of genotypes and epigenetic processes within the development of depression after childhood trauma, thereby building the basis for future research and clinical interventions
    corecore